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которой была доказана следующая теорема: момент n-ного порядка выпуклой плоской 

пластины относительно прямой L, проводимой параллельно заданной прямой, достигает 

наименьшего значения тогда, когда прямая L представляет собой линию (n – 1)-симметрии 

пластины. В данной статье утверждение этой теоремы распространяется со случая 

выпуклой пластины на общий случай произвольной плоской пластины. 
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ВВЕДЕНИЕ 

Существует много книг и статей, посвященных описанию разнообразных методов 

обработки деталей машин (см., например, работы [1–13]). Чтобы при изготовлении и 

обработке детали электрической машины сделать оптимальный выбор из длинного списка 

соответствующих методов и технологий, необходимо учитывать распределение массы 

внутри детали. Это распределение описывается соответствующей функцией плотности, и 

потому изучение ее свойств, особенно в тех случаях, когда эта функция, а значит и 

соответствующая деталь, имеет симметрию того или иного вида, представляет интерес для 

исследователей. В статье [22] с точки зрения вопросов симметрии изучался линейный 

стержень, т.е. одномерная деталь, имеющая функцию плотности, зависящую от одной 

переменной. В работах [14–17, 20, 23] подобным образом изучались пластины, т.е. 

плоские детали, имеющие функцию плотности, зависящую от двух переменных. Наконец, 

в статьях [18, 19] в качестве деталей выступали пространственные тела с функцией 

плотности, зависящей от трех переменных. 

Настоящая статья продолжает исследования плоских пластин и представляет собой 

продолжение работы [23]. В работе [23] была установлена полезная теорема о линиях 

n-симметрии выпуклой пластины. В настоящей статье утверждение этой теоремы 

распространяется на более общий случай произвольной плоской пластины. 

РЕЗУЛЬТАТЫ И ИХ ОБОСНОВАНИЯ 

Рассматривается плоскость вместе с заданной на ней прямоугольной декартовой 

системой координат. Простой областью называется всякая область этой плоскости, 

граница которой представляет собой замкнутую линию без самопересечений (при этом 

граница области считается частью области и, таким образом, всякая простая область 

замкнута). Точки простой области, не лежащие на ее границе, являются внутренними 

точками этой области. Простая область называется выпуклой, если всякая прямая, 

проведенная через любую ее внутреннюю точку, пересекает границу данной области 

ровно в двух точках. Под областью понимается простая область или объединение 

нескольких простых областей. Область S1 является подобластью области S, если S1  S. 

Область S вместе с определенной в ней непрерывной неотрицательной функцией двух 

переменных ),( yxf  представляет собой пластину D, при этом функция ),( yxf  

рассматривается как функция плотности пластины D и кратко именуется плотностью. 

Подобласть области S вместе с соответствующим ограничением функции ),( yxf  

называется подпластиной пластины D. Пластина D является выпуклой, если соответ-

ствующая область S выпукла. Пластина D является связной, если соответствующая область 

S простая. В случае, когда область пластины не является простой, пластина называется 

составной (следует отметить, что в источнике [23] под пластинами понимались связные 

пластины, поскольку составные пластины не рассматривались).  

Следующие определения были подробно рассмотрены в работе [23]. 

Пусть имеются прямая L и пластина D с областью S и функцией плотности ),( yxf . 

Если n – целое неотрицательное число, то моментом n-го порядка пластины D 

относительно прямой L называется 

 

S

),(),()D( dxdyyxfyxrM
n

n , 
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где ),( yxr  – расстояние от точки ),( yx  до прямой L (следует отметить, что значение 

момента )D(nM  не зависит от выбора системы координат, поскольку функция плотности 

и функция ),( yxr  при заданной прямой L являются функциями точки пластины). 

Частные случаи этого определения, отвечающие значениям 0n , 1n , 2n , 

соответствуют традиционным определениям из учебника [24]: )D(0M  представляет собой 

массу пластины D (вне зависимости от положения прямой L), )D(1M  – статический 

момент относительно прямой L, )D(2M – момент инерции относительно прямой L. 

(Требование к функции плотности, состоящее в том, что масса любой пластины и массы 

всех ее подпластин должны быть больше нуля, принятое в статьях [16, 23], сохраняется и в 

настоящей работе). 

Прямая L, делящая пластину D на две подпластины D1 и D2, называется линией 

n-симметрии пластины D, если )D()D( 21 nn MM  . Частные случаи этого определения, 

отвечающие значениям  0n  и 1n , соответствуют известным понятиям (см. статьи 

[16, 23]): линии 0-симметрии – это линии полумасс (линии s-симметрии), а линии 

1-симметрии – это линии равновесия (линии c-симметрии). Напомним, что точка 

пересечения всех линий равновесия представляет собой центр масс (в смысле 

традиционного определения из учебника [24]), а точка пересечения всех линий полумасс – 

центр полумасс (в смысле определений из статей [16, 23]). Как известно, центр масс всегда 

существует, в то время как центр полумасс может не существовать. В работе [14] было 

показано, что в случае, когда существуют оба эти центра, они могут не совпадать. 

В работе [16] установлено, что для всякого целого неотрицательного числа n, любой 

пластины D и произвольно проведенной прямой существует единственная линия 

n-симметрии пластины D, параллельная заданной прямой. 

Теорема. Момент n-ного порядка (при n  0) плоской пластины D относительно 

прямой L, проводимой параллельно заданной прямой, достигает наименьшего значения 

тогда, когда прямая L представляет собой линию (n – 1)-симметрии пластины D. 

В работе [23] эта теорема доказана для случая, когда пластина D выпукла. Цель 

настоящей работы – доказать данную теорему для случая произвольной связной плоской 

пластины D. Доказательство будет построено по той же схеме, что и доказательство в 

работе [23], и так же будет опираться на следующую вспомогательную лемму, установ-

ленную в работе [22]: 

Лемма 1. Если функция )(xf  непрерывна и n  0, то 

а)    

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1
. 

Кроме того, для доказательства теоремы удобно будет выделить следующее 

очевидное утверждение: 

Лемма 2. Если функция )(xf  непрерывна и n  0, то 
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Доказательство теоремы. 

Рассмотрим пластину D с областью S произвольной формы. Чтобы сделать наши 

общие рассуждения более наглядными, будем сопровождать их конкретным примером 

области S – именно тем, который представлен на рисунке. В этом примере область S 

является составной и состоит из двух связных компонент (заметим, что увеличение 

компонент связности ничего принципиально нового не привнесет). Если провести прямую, 

пересекающую область S, то в точке пересечения линии границы с прямой, как правило 

(но не всегда), линия границы переходит с одной стороны прямой на другую. Точку 

пересечения прямой и линии границы будем называть особой, если в некоторой 

окрестности этой точки линия границы остается по одну сторону от прямой. Так, на 

рисунке особыми точками являются точки пересечения A, C, G, H, P, Q, в то время как 

точки пересечения B, K, E и F особыми не являются. 

 

 
Область S и прямая L, разбивающая область S на подобласти S1 и S2 

 

Так же, как и в доказательстве из источника [23], будем считать, что та прямая, 

параллельно которой проводится прямая L, есть ось OY заданной на плоскости 

прямоугольной декартовой системы координат (очевидно, что это предположение не 

ограничивает общности наших рассуждений). Пусть прямая L, разбивающая пластину D 

на две подпластины D1 и D2 и, соответственно, область S на две подобласти S1 и S2, 

проходит через точку t на оси OX. На рисунке прямая L проведена пунктиром, а области S1 

и S2 показаны разнонаправленной штриховкой (при этом область S1 простая, но не 

выпуклая, а область S2 является составной: она состоит из трех связных компонент). 

Момент n-го порядка пластины D относительно прямой L может быть записан в 

следующем виде: 

     
21 SS

21 ),(),(),(),()D()D()D( dxdyyxfyxrdxdyyxfyxrMMM
nn

nnn  

    

2121 SSSS

),(),(),(),( dxdyyxftxdxdyyxfxtdxdyyxftxdxdyyxftx
nnnn

. 

Очевидно, )D(nM оказывается функцией, зависящей от переменной t: )()D( tMM nn  . 

Легко видеть, что эта функция определена и непрерывна на всей числовой оси: 
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    

21 SS

),(),()( dxdyyxftxdxdyyxfxttM
nn

n . 

Заметим, что в этом представлении функции )(tM n  области интегрирования S1 и S2 с 

изменением переменной t меняют свои очертания; так, например, при at   будет S1 =  и 

S2 = S, а при qt   будет S1 = S и S2 = . Для того чтобы выяснить, при каком положении 

прямой L момент )D(nM  достигает наименьшего значения, функцию )(tM n  нужно 

исследовать на экстремум при помощи производной, но, чтобы выполнить такое 

исследование, необходимо получить более детальное представление этой функции. 

Будем рассматривать вертикальные (т.е. параллельные оси OY) прямые, 

пересекающие область S. Выделим из них те, которые имеют хотя бы одну особую точку 

пересечения с линией границы области S, и проведем их (на рисунке такие прямые 

проведены сплошными тонкими линиями). Точки пересечения этих линий с осью OX 

вместе с концами отрезков, представляющих собой проекции компонент связности 

области S на ось OX, определяют разбиение оси OX на промежутки. Так, в примере с 

областью S на рисунке ось OX разбивается на следующие промежутки: ];( a ,  ];[ ca , 

];[ dc , ];[ bd , ];[ pb , ];[ qp , );[ q . Теперь, переходя к более подробному представлению 

функции )(tM n , будем отдельно записывать ее для каждого промежутка полученного 

разбиения числовой оси. Переведем двойные интегралы в повторные так, что внешние 

интегралы по переменной x будем брать отдельно по каждому из отрезков разбиения (при 

этом дополнительной точкой деления оси на промежутки будет выступать точка, 

определяемая значением текущей переменной t). Тогда при отыскании производной этой 

функции окажется возможным применить лемму из работы [22] тем же образом, что и в 

доказательстве, приведенном в работе [23]. Поясним этот общий тезис на примере области 

S, показанной на рисунке. Предположим, что границы области S заданы непрерывными 

функциями следующим образом: 

дуга AB – функцией )(1 xy  ,         

дуга BE – функцией )(1 xy  ,          

дуга CG – функцией )(1 xy  ,              

дуга EH – функцией )(1 xy  , 

дуга PUQ – функцией )(1 xy  ,            

дуга AK – функцией )(2 xy  , 

дуга CF – функцией )(2 xy  , 

дуга KG – функцией )(2 xy  , 

дуга FH – функцией )(2 xy  , 

дуга PVQ – функцией )(2 xy  . 

На каждом из семи промежутков ];( a ,  ];[ ca , ];[ dc , ];[ bd , ];[ pb , ];[ qp , );[ q  

представление функции )(tM n  в виде суммы повторных двойных интегралов будет 

выглядеть по-своему. Запишем такое представление для отрезка ];[ dc . 

Поскольку     

21 SS

21 ),(),()D()D()( dxdyyxftxdxdyyxfxtMMtM
nn

nnn , можно 

записать необходимое представление для каждого слагаемого отдельно: 
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Производная функции )(tM n  также разбивается на два слагаемых: 

   
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


)D()D()( 21 nnn MMtM . 
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Вычислим второе слагаемое, применяя леммы 1б и 2б: 
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Таким образом, получены два соотношения: 
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Сложив их, находим: 
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nnn MMntM .                                                (3) 

Справедливость равенства (3) установлена для интервала );( dc . Чтобы убедиться в 

том, что это равенство выполнено и для других интервалов, нужно для каждого из них 

преобразовать слагаемые, составляющие функцию )(tM n , переведя двойные интегралы в 

повторные, и затем, применяя леммы 1 и 2, найти производные. 

Запишем, например, представление функции )(tM n  для отрезка ];[ bd  (теперь 

вертикальная прямая L должна пересекать ось ОХ между точками d и b). 
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Дальнейшие рассуждения, связанные с отысканием производных и доказательством 

равенства (3) для интервала );( bd , могут быть выполнены по той же схеме, что и в 

рассмотренном случае для интервала );( dc .  

Таким образом можно установить справедливость соотношения (3) для каждого из 

интервалов );( a , );( ca , );( dc , );( bd , );( pb , );( qp , );( q . Выполнение равенства (3) в 

концах этих интервалов можно установить, опираясь на следующий простой факт из 

математического анализа: если непрерывная функция имеет в некоторой точке равные 

односторонние производные, то ее обычная производная в этой точке существует и 

равна общему значению односторонних производных. 

Таким образом, соотношение (3) определяет производную функции )(tM n  на всей 

числовой оси, и потому его удобно использовать для исследования функции )(tM n  на 

экстремум. Приравнивая )(tM n


 нулю, находим, что экстремум функции 
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)(tM n приходится на то положение прямой L, при котором )D()D( 2111   nn MM , но это и 

значит, что прямая L является линией (n – 1)-симметрии пластины D. 

Продолжая исследование функции )(tM n , найдем ее вторую производную: 

     





  )D()D()D()D()(" 21112111 nnnnn MnMnnMnMtM . 

В силу (1) и (2):   )D()1()D( 1211  


nn MnM ,   )D()1()D( 2221  


nn MnM . 

Отсюда следует, что 

 )D()D()1()(" 2212   nnn MMnntM .                                             (4) 

Это выражение при 2n  и любом значении t очевидно больше нуля, что означает, 

что график функции )(tM n  всюду вогнут, и потому найденный экстремум единственен и 

представляет собой минимум. 

Этим теорема доказана для всех 2n . Случай 1n  рассмотрим отдельно.  

Соотношение (3) будет выполнено при любом 0n . Подставляя в это соотношение 

1n , получаем: 

 


21 SS

20101 ),(),()D()D()( dxdyyxfdxdyyxfMMtM . 

С ростом значений переменной t область S1 может только увеличиваться, а область S2 – 

только уменьшаться, поэтому и первое слагаемое в записанной разности двух двойных 

интегралов с ростом значений переменной t может только увеличиваться, а второе (по 

абсолютной величине) – только уменьшаться. Это значит, что )(1 tM


 – неубывающая 

функция. Кроме того, функция )(1 tM


 очевидным образом является непрерывной. 

Поскольку 0)D()(1 


maM  и 0)D()(1 


mqM , то где-то в интервале );( qa  найдется 

точка otx   такая, что 0)(1 


otM . Левее этой точки 0)(1 


tM , и поэтому функция )(1 tM  

может только убывать или оставаться постоянной. Правее ее 0)(1 


tM , и поэтому 

функция )(1 tM  может только возрастать или оставаться постоянной. Следовательно, в 

точке to функция )(1 tM  достигает своего наименьшего значения. В то же время, поскольку 

)D()D( 2010 MM  , вертикальная прямая, проведенная через эту точку, будет линией 

0-симметрии (линией полумасс) пластины D. Таким образом, и в случае 1n  теорема 

оказывается выполненной. Однако при этом точка to может и не быть точкой экстремума, 

поскольку она может принадлежать некоторому отрезку, в каждой точке которого 

0)(1 


tM . В этом случае для пластины D существует бесконечно много линий 

0-симметрии (линий полумасс). 

Доказательство теоремы закончено. Хотя это доказательство опиралось на 

конкретный пример пластины D, легко видеть, что рассуждения, доказывающие теорему в 

этом случае, без каких либо проблем переносятся на случай любой другой плоской 

пластины. При таком переносе может увеличиваться число слагаемых в представлении 

функции )(tM n , но принципиальных трудностей не возникает. 

В дополнение к приведенному доказательству следует сделать важное замечание. В 

работе [16] доказано, что для любого целого неотрицательного числа n и произвольной 
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связной пластины D существует единственная линия n-симметрии этой пластины, 

параллельная данной прямой. Как следует из рассмотренных рассуждений, при 0n  это 

утверждение переносится и на составные пластины, но при 0n  для составных пластин 

оно может не выполняться. Линия 0-симметрии (линия полумасс) всегда существует, но 

таких линий может быть бесконечно много. Например, в случае, когда пластина состоит из 

двух компонент связности одинаковой массы, всякая прямая, проведенная между этими 

компонентами и не задевающая ни одной из них, будет линией 0-симметрии (линией 

полумасс) данной пластины. 

ЗАКЛЮЧЕНИЕ 

Рассмотрение линий n-симметрии для произвольного целого неотрицательного n 

позволяет иметь в обиходе общее понятие n-симметрии и изучать целый спектр симметрий 

с единой точки зрения. Такой подход, с одной стороны, дает возможность переносить 

частные результаты, полученные для s-симметрии и c-симметрии, на общий случай 

n-симметрии (см., например, источники [16, 17]) и, с другой стороны, применять 

доказанные общие утверждения к интересным с практической точки зрения частным 

случаям. Так, частными случаями доказанной в настоящей статье общей теоремы 

являются следующие полезные факты: 

1) статический момент произвольной плоской пластины D относительно прямой L, 

проводимой параллельно заданной прямой, достигает наименьшего значения тогда, когда 

прямая L представляет собой линию полумасс пластины D; 

2) момент инерции произвольной плоской пластины D относительно прямой L, 

проводимой параллельно заданной прямой, достигает наименьшего значения тогда, когда 

прямая L представляет собой линию равновесия пластины D. 

Теорема, рассмотренная в данной статье, представляет собой обобщение теоремы, 

доказанной в работе [23] для случая выпуклой пластины, на случай произвольной плоской 

пластины. Поэтому и приведенные утверждения являются более общими в сравнении с 

аналогичными утверждениями, которыми заканчивается работа [23]. 
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Abstract. The article is a continuation of the previous article by the same authors, in 

which the following theorem was proved: the moment of the n-th order of a convex flat plate 

relative to a straight line L, drawn parallel to a given straight line, reaches the smallest value 

when the straight line L is a line of (n – 1)-symmetry of this plate. In this article, the validity of 

this theorem is extended from the case of a convex plate to the general case of an arbitrary flat 

plate. 

Keywords: moment of n-th order, line of n-symmetry, half-mass line, equilibrium line, 

flat plate, density function, mass, center of mass, electric machine. 
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