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Abstract. It is stated that the process of creating large language models 

involves time-consuming operations, significant costs and high technical 

requirements. The problems of the development of these models are noted. The 

key factors determining the final cost of the model are listed. 
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Модели типа Gemini и GPT-4 произвели революцию во 

взаимодействии людей с технологиями. С помощью таких моделей можно 

генерировать текст, улучшать поиск и решать творческие задачи. Данные 

модели облегчают работу клиентских служб. 

Большие языковые модели (Large language models, или LLMs) 

представляют собой сложные системы, функционирующие на основе 

глубоких нейронных сетей, создающие и распознающие различные тексты. 

Они обучаются на огромных объемах данных, включающих сотни 

миллиардов предложений из открытых источников (интернета и т. п.). 

Концепция языковых моделей базируется на прогнозировании 

вероятной последовательности слов, благодаря чему значительно 

улучшается способность машин понимать контекст и смысл. Технологии 

эволюционировали постепенно: сначала они представляли собой системы, 

основанные на правилах, затем превратились в статистические модели, а 

потом стали современными нейросетями. Сегодня доминируют транс-

формеры, которые благодаря глубокому обучению могут производить 

невероятно точные анализ и генерацию языка [2]. 

Большие языковые модели, о чем мы вскользь говорили выше, 

обучаются на значительных объемах данных из разных источников, что 

позволяет им глубже «понимать» языковые структуры, грамматику и 

особенности использования языка. Благодаря этому они выполняют 

широкий спектр задач, имитируя человеческое восприятие. Последнее 

делает взаимодействие индивида с технологиями более естественным и 

удобным, чем когда-либо [2]. 

В 2024 году Стэндфордским университетом была опубликована 

седьмая редакция отчета о ключевых тенденциях и достигнутых 

результатах в области искусственного интеллекта AI Index Report 2024 [1]. 

В нем, в частности, среди проблем развития LLMs эксперты отмечают 

недостаток информации для их обучения. За последние несколько лет чат-

боты, функционирующие на базе искусственного интеллекта, стали крайне 

прогрессивными. Это стало возможным во многом благодаря тому, что 

LLMs обучались на все возрастающем количестве источников данных, 

таких как книги, статьи и т. д. Однако усиливающаяся зависимость 

моделей искусственного интеллекта от информации привела к 

возникновению опасений, что будущие поколения исследователей будут 

испытывать нехватку сведений для дальнейшего масштабирования и 

совершенствования своих систем [4]. 
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По заявлениям компании Epoch AI, опубликованным в 2022 году, 

высококачественные языковые данные могут быть полностью исчерпаны к 

2024 году, а резерв низкокачественных, согласно прогнозам, будет 

полностью использован в течение следующих двух десятилетий, ресурсы 

изображений и графической информации будут потрачены к концу 2030-х 

или середине 2040-х годов. Одним из решений указанной проблемы может 

стать обучение LLMs на синтетических данных, которые модели создают 

самостоятельно. По мнению исследователей из Стэнфордского 

университета, такой подход не только поможет справиться с возможным 

истощением данных, но и позволит генерировать информацию там, где ее 

с самого начала недостаточно [4]. Однако некоторые ученые отмечают, что 

существуют ограничения, связанные с обучением моделей на 

синтетических данных. Например, в определенный момент такие LLMs 

«теряют способность запоминать истинные распределения данных и 

начинают выдавать узкий диапазон результатов» [4]. 

Обучение больших языковых моделей, характеризующихся 

миллионами параметров, требует значительных вычислительных 

мощностей. В первую очередь последнее связано с необходимостью 

обрабатывать огромные массивы данных и оптимизировать параметры 

модели для повышения точности прогнозов. Вычислительные затраты на 

обучение модели зависят от ряда факторов: 

1) объема данных (значительный объем информации, необходимый 

для обучения, может перегружать вычислительные ресурсы); 

2) ограниченности ресурсов (нехватка памяти, дефицит графических 

процессоров и даже высокие тарифы на электроэнергию могут замедлить 

обучение); 

3) качества данных (является ключевым моментом; плохие или 

предвзятые cведения могут привести к ошибочным результатам) [6]. 

Размеры нейронных сетей, используемых в LLMs, растут в 

геометрической прогрессии. Например, если ранние модели, такие как 

GPT-2, содержали около 1,5 млрд параметров, что соответствует мозгу 

небольшого животного (например, медоносной пчелы), то последние 

модели (допустим, GPT-4) имеют около триллиона параметров, что 

приближает их по масштабу к человеческому мозгу. Экспоненциальный 

рост размеров и сложности моделей привели к увеличению затрат на 

обучение. Так, для моделей типа GPT-3 и PaLM нужен примерно 

1 терабайт памяти. С усилением спроса на вычислительные мощности 

несоответствие между требованиями искусственного интеллекта и 

возможностями оборудования становится все более очевидным [6]. 

Увеличение возможностей моделей ведет к росту затрат на их 

обучение и дальнейшую эксплуатацию [4]. Это вызывает интерес у 

теоретиков и беспокойство у практиков. Согласно закону Мура, 
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производительность моделей может повышаться только за счет роста 

вычислительных мощностей. Однако в то время как потребность в 

вычислительных ресурсах увеличивается в 10 раз каждый год, 

производительность оборудования – лишь в 3 раза каждые два года. Этот 

разрыв приводит к необходимости использовать больше машин, что еще 

сильнее повышает стоимость обучения, особенно LLMs. Для решения 

указанной проблемы необходимо искать более экономичные подходы [6].  

По мнению директора лаборатории искусственного интеллекта в 

компании Anthropic Д. Амодея, в ближайшие два года расходы на 

обучение моделей вышеназванного интеллекта могут достичь примерно 

10 млрд долл. [4; 5]. Такие расходы будут по карману только крупным 

организациям. Если эта тенденция сохранится, то к 2027 году стоимость 

обучения моделей искусственного интеллекта, согласно прогнозам 

специалистов Epoch AI, превысит 1 млрд долл. [8]. По их наблюдениям, 

ежегодные затраты увеличиваются в среднем в 2,4 раза [2]. В связи с этим 

имеет смысл выделить основные факторы, которые влияют на этот 

процесс. К таким факторам относятся: 

1. Запуск больших языковых моделей (требует огромных 

вычислительных мощностей; большая часть (47–67 %) совокупных затрат 

приходится на аппаратное обеспечение (из них на серверные компоненты – 

15–22 %; межсоединения на уровне кластера – 9–13 %); 29–49 % 

составляют расходы на персонал; 2–6 % – затраты на электроэнергию [8]). 

2. Использование для обучения LLMs графических процессоров 

высшего класса, приобретение или аренда которых обходится довольно 

дорого. По оценке Д. Хуанга, генерального директора NVIDIA, для 

обучения языковой модели Generative Pre-trained Transformer Mixture                  

of Experts потребовалось привлечь в течение 3–5 месяцев 

25 тыс. графических процессоров на базе Ampere [8]. 

3. Повышение интеллектуальности модели (часто связано с 

применением крайне сложных архитектур или крупных моделей 

(например, масштабирование с 7 до 300 млрд параметров) или с 

одновременным задействованием большего числа экспертов (допустим, в 

модели Mixture of Experts, или MoE). Очевидно, что такие модели стоят 

дороже [3]). 

4. Количество токенов, которое поступает на вход модели и которое 

получает пользователь на выходе (оно влияет на время обработки и 

требуемые вычислительные ресурсы, расход энергии для обработки. Все 

это в конечном счете вызывает рост затрат [3]). 

5. Тип отрабатываемых моделью данных: текст, графика, аудио или 

видео (он влияет на стоимость; для обработки аудио и видео обычно 

требуется затратить больше ресурсов, чем для обработки текста [3]). 
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На данный момент для оценки затрат на обучение моделей 

искусственного интеллекта, в том числе и больших языковых моделей, 

используются, как правило, два подхода. В рамках первого из них 

обучение проводится на собственном или арендованном оборудовании; 

второго – с применением технологий облачных вычислений. Некоторые 

ученые пришли к выводу, что величина затрат, определенная согласно 

второму подходу, обычно намного выше, чем установленная по 

первому [4]. 

Таким образом, был рассмотрен инструментарий, позволяющий 

выяснить, какой из вариантов (локальный вычислительный кластер или 

облачная инфраструктура) является более экономичным решением для 

реализации обучения больших языковых моделей. 
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