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Аннотация. В статье предложен математический аппарат расчета 

рациональной структуры распределения временных и материальных 

ресурсов между сегментами оценки вузов (университетов). Отмечено, что 

при этом определяется рациональное время оценки экономических 

возможностей вуза по выполнению государственного заказа. Задача такого 

вида относится к классу задач нелинейного программирования с 

ограничениями. Используя подобный подход, представляется возможным 

определить рациональный состав аппаратно-технических, тестовых и 

методических средств проведения оценок (проверок) на основе 

имеющегося для оценки резерва материальных и временных ресурсов. 

Подчеркнуто, что при перспективном планировании всех экономических 

процессов в университете чрезвычайно важную роль играет прогно-

зирование сроков достижения определенных значений показателя, 

изменяющегося во времени. Предположено, что оцениваемые экономии-

ческие процессы носят стохастический характер.  

Ключевые слова: университет, сегменты подготовки, высококвали-

фицированные специалисты, временные ресурсы, материальные ресурсы, 

экономические возможности, средства оценки, государственный заказ, 

математические модели.  

 

Для анализа статистических материалов при разработке методики 

расчета рациональной структуры распределения временных и 

материальных ресурсов вузов (университетов) между сегментами                 

оценки будем полагать известным уровень базовой представительности 

выборки Рб. Представляя требуемый и базовый уровни представи-

тельности выборки через компоненты содержания, можно записать их 

следующим образом: 
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где PTi , Pбi  – соответствующие i-й компоненте требуемый и базовый 

уровни представительности выборки; n – число компонент, являющихся 

важными при проведении данной проверки. 

Интерес представляет задача определения рационального времени 

оценки экономических возможностей спортивного вуза по выполнению 

государственного заказа. Оценивая общий уровень представительности 
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выборки, удобно выразить его не в виде совокупности частных 

показателей, число которых может быть весьма большим, а в форме 

интегрального (агрегированного) показателя, функционально связанного с 

исходными данными. Оптимальной формой представления интегральных 

показателей является аддитивная свертка соответствующих компонент,               

т. е. 

 

                            TiiT PaP ,      бiiб PaP ,                                    (2) 
 

где ai – весовые коэффициенты, определяющие важность проверки                       

i-й компоненты для формирования заключения контрольной проверки;  

 

1
i

ia .

 
При этом каждая компонента оценки выделенного сегмента 

рассматривается как интенсивно изменяющаяся во времени величина, 

закон изменения которой представляется экспоненциальной зависимостью, 

что позволяет применять правило 20/80. Тогда уровень представи-

тельности выборки в i-й области оценки можно выразить как 

 

                                    ),exp()1(1)( tPtP iбii                                      (3) 

где i – интенсивность процесса оценки в i-й области. 

Если считать известными общее время оценки t и уровень 

отпускаемых на это средств С, то задача определения рациональных 

величин времени оценки в каждом выделенном сегменте будет состоять в 

определении максимума функционала:  
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В то же время должны соблюдаться условия: 
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где Ci – стоимость единицы времени оценки i-й области; Ti – верхнее 

значение времени, необходимого для получения выводов в i-й области с 

заданной степенью уверенности. 

Задача такого вида относится к классу задач нелинейного 

программирования с ограничениями [1, 2]. Рассмотрим ее как вырожден-

ную вариационную задачу со скалярным критерием, для которой функции 
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управления U отсутствуют, но имеются варьируемые параметры (t1, …, tn). 

Тогда решение задачи может быть записано следующим образом: 

                                       
.)1(1,0 ni

t
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                                               (6) 
 

Дополним записанную выше систему одной функцией 

 

                                              tn + 1,                                                           (7) 

определяемой уравнением  
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Тогда система дифференциальных связей в задаче будет содержать 

одну функцию-координату tn + 1, зависящую от n искомых параметров                    

t1, …, tn, которые играют в данной задаче роль управлений, сохраняющих 

постоянное значение на интервале оценки t  [t0, t1]. При этом функционал 

вариационной задачи  
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Как видно, экстремум функционала выраженной вариационной 

задачи совпадает с экстремумом исследуемой функции. Таким образом, 

сформулированная выше задача может быть представлена как задача 

вариационного исчисления. Это дает возможность использовать для ее 

решения эффективные методы решения вариационных задач. Одним из 

таких является метод нелинейного преобразования переменных, 

изложенный в классической работе по вариационному исчислению. Для 

его реализации необходимо систему ограничений в выражении (4) 

привести к нормальному виду: 

 

                            |g1|  1; |g2|  1; … ; |gn + 2|  1,                                 (10) 

    

где g1, …, gn + 2 – новые нормальные характеристики ограничений 

исследуемой задачи:  
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где c – параметр ограничения  iii tct
 и т. д.; cc    – верхняя и нижняя 

границы допустимых по формулировке (4) изменений параметров. 

При таком преобразовании характеристик область их ограничений 

(область E
L
 существования системы (4)) в пространстве переменных 



  150  

перейдет в L = (n + 2)-мерный куб с полуребром, равным единице. 

Обозначим этот куб буквой 
LE
1 . Каждая грань куба 

LE
1   

 

                       1),...,(1),...,( 11  nlnl ttgилиttg                              (12) 
 

в фазовом (n + 2)-мерном евклидовом пространстве координат ti, 

выполняющих в вырожденной вариационной задаче роль управлений, 

соответствует некоторой граничной поверхности замкнутой области 
LE
1 , 

которая ограничивает вариацию переменных задачи ),1( niti  . 

Следовательно, в области 
LE
1  следует искать  решение задачи. 

Очевидно, что область существования 
LE
1  должна отвечать также 

ограничениям задачи по времени и материальным ресурсам. 

Для принятых выше условий нормализации получим: 
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Запишем далее для системы уравнений Эйлера – Лагранжа значения 
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где l – соответствующие неопределенные множители Лагранжа. 

Если множитель l отличен от нуля, то экстремум функции (14) 

совпадает с соответствующей l-й границей области варьирования, т.е. 

1),...,( 1 nl ttg . При этом знак границы (+1 или –1) должен быть одинаков 

со знаком множителя l. Точку схода экстремума с l-й границы внутрь 

области варьирования определяет обращение в нуль соответствующего 

множителя при условиях l = 0;  –1 < gl(.) < 1. При обращении множителя 

l в нуль с последующим смещением знака изображающая точка 

экстремума представительности выборки сходит с границы на траекторию, 

лежащую внутри области варьирования, и переходит по ней на границу 

     или 

; 
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противоположного знака. При этом равенство нулю множителя l на 

некотором интервале ],[
**
ll tt  может соответствовать плавному управлению 

представительности выборки, т.е. непрерывному переходу экстремума с 

одной границы на другую. На практике это соответствует непрерывному 

изменению характеристики )(lg  в заданной области ее изменения 

(например, изменению общего времени оценки, денежных ресурсов, 

времени оценки конкретного (i-го) структурного подразделения спортив-

ного университета). 

Исследуем решение конкретной задачи (14). С учетом вида 

функционала (4) систему (14) можно переписать следующим образом: 
 

          










 

.2),1(1;0)(1

;)1(1;0
1

2
1

22)exp( 221

nlg

ni
TTc

c
tPa

ll

i
i

iiiБii





               

(15)

 
 

Если 1 = 2 = … = n + 2 = 0, то первые n уравнений не 

выполняются, так как 0)exp(  iiiБii tPa  . Следовательно, внутренние 

параметры, являющиеся решением задачи, отсутствуют, и решение 

необходимо искать на граничной поверхности куба El1, задаваемой 

различными сочетаниями множителей l Лагранжа, упорядоченное 

изменение которых можно определить следующим образом 
 

                        1 =  2 = 0; 2  0; i = n,1 ;                                            (16) 

     1  0; 2  0; i  = 0; j   0; z  0; i, j, z = 1(1)n; i  j, i  z;        (17) 

              2  0; 1 = 0; i  0; j = 0; i, j = 1(1)n; i  j;                        (18) 

             1  0;i   0; 2 = 0; j = 0; i, j = 1(1)n; i  j.                          (19) 

 

Общее число описанных в случаях 1–4 (выражения (16)–(19)) 

упорядочений соответствует числу сочетаний из n + 2 по n, т.е. числу 

фазовых состояний области Еl1. Каждому фазовому состоянию будет 

соответствовать своя система (в данном случае – линейных алгебраических 

уравнений), которая может быть решена известными методами. 

Результаты решений будут определять рациональное распределение 

времени t
*
i, соответствующее данному фазовому состоянию области 

возможных вариаций переменных. Обозначим эти решения через ti, где             

  El1 означает -е фазовое состояние. Тогда решением задачи будут 

такие ti*, которые обеспечивают максимум функции Р(t1, ..., tn ), т. е. 
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Рассмотрим пример. Допустим,  что n = 2, т.е. 

 

           P(t1,…,tn) = max;)exp()exp( 22221111  tPatPa ББ              (21) 

t1 + t2  T; 

c1t1 + c2t2  c; 

0  t1  T1;   0  t2  T2. 

 

Обобщенное уравнение Лагранжа будет представлено следующей 

системой: 
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Рассмотрим все возможные упорядочения фазовых состояний 

области Еl1: 

а) 1 = 2 = 3 = 4 = 0, т.е. внутренние параметры отсутствуют; 

б) 3  0, 4  0, 1 = 2 = 0.  

В этом случае из последних двух уравнений получаем t*1 = T1 , t*2 = 

= Т2. При этом должно выполняться условие T1 + T2  T. В противном 

случае эта точка должна быть исключена из области El1; 

в) 3  0, 3  0, 1 = 4 = 0.  

Из четвертого и пятого уравнений получаем:  

t
*
1 = T1; 

;
2

11*
2

c

Tcc
t




 
г) 1  0, 2  0, 3 = 4 = 0.  

Из третьего и четвертого уравнений получаем:    
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д) 1  0, 4  0, 2 = 1 = 0.  

Из третьего и шестого уравнений получаем: 

t*1 = T – t*2 ;   t*2 = T2; 

е) 2  0, 4  0, 3 = 1 = 0. 

Из четвертого и шестого уравнений будем иметь:  

1

22*
1

c

Tcc
t


 

 
t
*
2 = T2. 

ж) 1  0, 3  0, 2 = 4 = 0.  

Из третьего и пятого уравнений будем иметь:  

t*1 = T; t*2 = T – T1. 

Значения параметров t*1, t*2, обеспечивающие максимум функции 

P(1, 2, t*1, t*2) окончательно определяют решение задачи. Оно зависит 

от параметров кривых представительности, получаемых по первой и 

второй компоненте, а также от уровня базовой представительности, т. е. от 

1, 2, PБ1, PБ2.  

В работах [3–6] показано, что различные этапы (процедуры, тесты                            

и др.) оценки экономических возможностей спортивных университетов, 

связанных с выполнением государственного заказа по подготовке 

высококвалифицированных специалистов, обеспечиваются различными 

множествами технических, программных средств, методиками проведения 

оценки и др. Используя подобный подход, представляется возможным 

определить рациональный состав аппаратно-технических, тестовых и 

методических средств проведения оценок (проверок) на основе 

имеющегося для оценки резерва материальных и временных ресурсов.  

Таким образом, при планировании всех экономических процессов 

важную роль играет прогнозирование сроков достижения определенных 

значений показателя, изменяющегося во времени. При этом естественно 

полагать, что экономические процессы носят стохастический характер. 

Подход к решению такого рода задач изложен в ряде работ. Однако 

практический интерес представляют также задачи расчета вероятности 

достижения определенного уровня показателя к заданному сроку, а также 

прогнозирования сроков достижения показателя с заданной вероятностью 

в случае моноскедостичности остаточной дисперсии при линейном и 

нелинейном тренде. 

Если детерминированная основа процесса описывается уравнением 

линейного тренда 0 1y a a  , а остаточная дисперсия гетероскедастична, 

то в расчетный момент времени p , при котором с заданной гарантией по-

казателя Y достигнет определенного значения î æy , может быть рассчитан 

по формуле 
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где
 
t – коэффициент, зависящий от числа уровней временного ряда n и 

заданной доверительной вероятности  ; 
0 1,a a  – статические коэффици-

енты уравнения линейного тренда; 2

y – остаточная дисперсия;  – сере-

дина временного ряда. 

При прогнозировании с помощью уравнений регрессии и тренда 

предполагается, что погрешность прогнозной оценки измеряется 

дисперсией статистических параметров а0, а1,…, аn. Постулируется, что 

дисперсия параметра а1 возрастает при отклонении аргумента X от 

среднего значения x [7]. Такое предположение справедливо для анализа 

регрессий, когда статистические наблюдения имеют тенденцию к 

группированию относительно точки с координатами  ,x y . 

Для случаев анализа динамических рядов вполне естественно 

принимать дисперсии а0 и а1 на участках определенности уравнений ряда 

постоянными, а величину этих коэффициентов считать вычисленными 

достаточно точно. Тогда суммарная остаточная дисперсия, 

характеризующая погрешность прогнозирования с учетом разброса 

фактических значений показателя относительно линии тренда, будет иметь 

следующий вид: 

0

2 2 2 2 1
1y a y

n
    

 
    

 
.

 

Тогда для линейного тренда расчетный момент p  достижения 

значения î æy  показателя Y может быть определен из равенства: 
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откуда можно получить 
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Обозначим наиболее вероятное значение p , соответствующее точке 

пересечения линии тренда с уровнем î æy , через .í â . Оно по очевидным 

соображениям может быть определено следующим образом: 
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Тогда полученное ранее уравнение второго порядка примет вид: 
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Знак «минус» следует ставить, если задаваемая односторонняя 

гарантия  < 0,5, «плюс» – если   > 0,5.  

Для динамического ряда с равноотстоящими уровнями подкоренное 

выражение зависит только от числа уровней [8], поэтому целесообразно 

использовать заранее рассчитанные числа 
1n

A
n


  (таблица). 

 

Подкоренные значения равноотстоящих уровней  

динамического ряда 

n 4 5 6 7 8 9 10 11 15 20 

A 1,118 1,095 1,08 1,069 1,061 1,054 1,049 1,044 1,033 1,025 

 

 

 

 

 



  156  

Таким образом, разработан математический аппарат расчета 

рациональной структуры распределения временных и материальных 

ресурсов между сегментами оценки, позволяющий оптимизировать силы и 

средства спортивных университетов для выполнения государственного 

образовательного заказа.  
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V.O. Kohno, I.A. Lepekhin 

 

Abstract. The article proposes a mathematical apparatus for calculating 

the rational structure of time and material resources allocation between the 

segments of higher education institutions (universities) evaluation. It is noted 

that in this case the rational time of evaluation of the university's economic 

capabilities to fulfill the state order is determined. The problem of this type 

belongs to the class of nonlinear programming problems with constraints. Using 
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such an approach, it is possible to determine the rational composition of 

hardware, test and methodological means of evaluation (checks) on the basis of 

material and time resources available for evaluation. It is emphasized that in 

prospective planning of all economic processes in the university the forecasting 

of terms of achievement of certain values of the indicator changing in time plays 

an extremely important role. It is assumed that the evaluated economic processes 

are stochastic in nature.  

Keywords: university, training segments, highly qualified specialists, 

temporary resources, material resources, economic opportunities, assessment 

means, state order, mathematical models. 

 

About the authors: 

Kohno Vladimir Olegovich – Postgraduate Student, Russian University of 

Sports "GTSOLIFK", Moscow. E-mail: pavelkohno@mail.ru 

Lepekhin Ilya Alexandrovich – Candidate of Law, Associate Professor of 

the Department of Geodesy and Cadastre, Tver State Technical University, 

Tver. E-mail: ilja-lepehin@yandex.ru 

 

 

УДК 658.64 

 

ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННОЙ СИСТЕМЫ 

УПРАВЛЕНИЯ ШКОЛОЙ ТАНЦЕВ  

С ИСПОЛЬЗОВАНИЕМ АЛГОРИТМОВ  

МАШИННОГО ОБУЧЕНИЯ  

 

Т.В. Павлович, В.А. Данилова, К.А. Кузнецова 
 

© Павлович Т.В., Данилова В.А., 

 Кузнецова К.А., 2024 
 

Аннотация. В статье раскрыта актуальность темы проектирования и 

внедрения информационной системы для управления школой танцев с 

использованием алгоритмов машинного обучения и описанием 

необходимого функционала в целях обеспечения эффективной работы 

организации. 
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