ПРЕДЕЛЬНЫЕ ИНВАРИАНТЫ ДИСТОРТНОСТИ В КОНТАКТНОМ ВЗАИМОДЕЙСТВИИ

Б.Ф. Зюзин, А.И. Жигульская

© Зюзин Б.Ф., Жигульская А.И., 2024

Аннотация. Дано определение понятия дистортности. Указаны шесть основных предельных уровней равновесных напряженно-деформированных состояний. Предложена обобщенная таблица предельных инвариантов дистортности для оценки этих состояний в задачах контактного взаимодействия.

Ключевые слова: контактное взаимодействие, предельные инварианты дистортности.

Древнегреческий мыслитель Платон еще 2 400 лет назад считал, что «непрерывные геометрические пропорции являются самыми мудрыми космическими соединениями...» [1].

В работах [1–7] авторами изложены основные положения теории предельных состояний в природных системах. При этом рассматривается новая парадигма научного познания, обусловленная наличием особой вероятностно-статистической внепространственно-временной закономерности функционирования различных структурных систем (в том числе искусственного интеллекта) в их предельных состояниях, связанных с максимальной скоростью (плотностью) изменения энтропии. Эта закономерность проявляется как свойство дистортности.

Дистортность — уникальный научный метод оценки инвариантов предельных состояний в природных средах и системах искусственного интеллекта.

Систематизация обширных научных данных в различных природных процессах позволяет предложить универсальную классификацию (нормирование) предельной асимптотики нелинейных процессов. Она соответствует предельным состояниям природных систем в критических точках среды в напряженно-деформированном поле (покоя, предельного цикла, скольжения, золотого сечения, качения и верчения), с физической точки зрения аналогична изменениям условий контактного взаимодействия структурных образований с позиций их внутреннего сцепления и трения с учетом закона Кулона – Мора [9].

Качественно следует различать шесть основных предельных уровней равновесных напряженно-деформированных состояний (НДС). Каждому

из уровней соответствуют вполне определенное состояние структурной системы и физический смысл ее проявления.

Основными напряженно-деформированными инвариантами предельных состояний (согласно предложенной классификации [16]) являются:

nокой — материал не испытывает никаких внешних воздействий, основной классификационный параметр НДС $\Pi_{K(H)} = 0$;

npeдельный цикл — соответствует условию пластичности Треска при $\Pi_{K(H)} = 1/2$, преобладают упругие обратимые деформации, проявляется максимальное значение эквивалентного сцепления материала;

скольжение — соответствует условию пластичности Мизеса — началу возникновения пластических необратимых деформаций, $\Pi_{K(H)} = 1/\sqrt{3}$;

золотое сечение — область предельной неоднородности отношений главных напряжений σ_2/σ_l , σ_3/σ_l , возникающих в структуре материала, $\Pi_{K(H)} = 2 / \pi$,

 κa чение — переход к нестационарному режиму развития пластических деформаций, $\Pi_{K(H)} = 1/\sqrt{2}$;

верчение — область абсолютной текучести, $\Pi_{K(H)} = 1$.

Оценка предельной асимптотики нелинейных процессов определяет ряд показателей (табл. 1), которые могут, наряду с параметром состояния $\Pi_{K(H)}$, использоваться (и уже использовались в отдельных случаях) для упорядочения напряженно-деформированных явлений в природных системах.

Таблица 1 Параметры квантования НДС

Tiapaweiph Rhailioballini 1120							
Определяющие	Обозначение	Область					
параметры	Obosiia-teline	естествознания					
Параметр эллиптичности	$\Pi_{K(H)}$	Геометрия					
Скоростной параметр	$\lambda = V_0 / V_n$	Кинематика					
Прогиб балки	Н	Физика					
Кривизна (гауссовская) эллипса	K_{ε}	Математика					
Частота энцефалограмм	$f_{\mathfrak{I}}$	Биология					
Показатель пластичности	P_o/C_9	Механика грунтов					
Показатель степени переработки	λ_o	Механика					
Уровень нелинейности	X_A	Дистортность					

Между приведенными величинами определяющих параметров существует прямо пропорциональная линейная взаимосвязь.

Выбор классификационных качественных уровней НДС произведен в соответствии с рядом имеющихся фактов наличия предельных

состояний, фазовых переходов и природных образований, которые уже объективно установлены и используются в отдельных областях естествознания.

Определяющим является принятый параметр состояния структурной системы $\Pi_{K(H)}$. Он представлен в виде инварианта, что дает возможность применять его в различных объектах природных систем. Эта возможность реализуется в представлении нашей реальности в системе классификации предельных инвариантов дистортности [7, 16].

На рисунке показан возможный диапазон варьирования параметра состояния структурной системы в области функционирования природной системы.

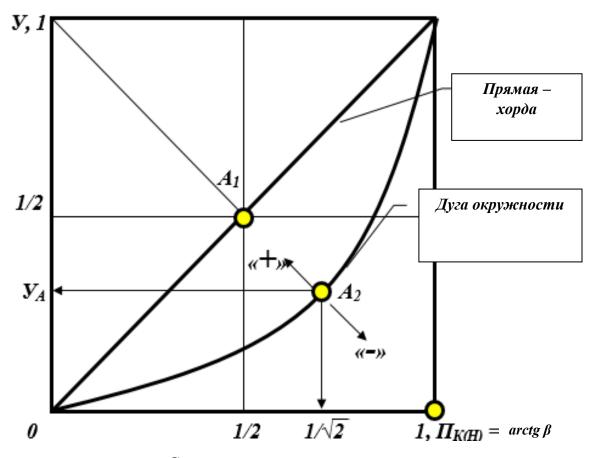


Схема «приведенного квадрата»

Главным классификационным признаком, лежащим в основе построения универсальной таблицы предельных инвариантов (табл. 2), является инвариант состояния в нелинейной геометрии $\Pi_{K(H)}$ (или просто пропорция), что было доказательно продемонстрировано в работах [8, 9]. При этом диапазон изменения инварианта состояния находится в пределах $\frac{1}{2} < \Pi_{K(H)} < 1/\sqrt{2}$, т.е. соответствует НДС структурной системы — предельному циклу и условию качения [5].

Таблица 2 Классификационная таблица предельных инвариантов дистортности

Параметры	Напряженно-деформированное состояние структурной системы					
И	Покой	Предель-	Скольже-	Золотое		Вер-
инварианты		ный цикл	ние	сечение	Качение	чение
b	0	0,20	0,25	0,30	0,333	0,5
а	1	0,80	0,75	0,70	0,666	0,5
b : a	0:100	20:80	25:75	30:70	333 : 666	50:50
$\Pi_{K(\Pi)} = b/a$	0	1/4	1/3	$\sqrt{2}-1$	1/2	1
$ \overline{\Pi_{K(H)}} = n/m = arctg \beta $	0	1/2	$1/\sqrt{3}$	$2/\pi$	$1/\sqrt{2}$	1
β°	0	26,56	30	32,48	35,26	45
γ°	90	63,44	60	57,5	54,74	45
$\varphi^{\circ} = \gamma^{\circ} - \beta^{\circ}$	90	36,8	30	23	19,47	0
X_A	0	0,333	0,366	0,389	0,414	0,5
N	\rightarrow	6,77	6	5,54	5,1	4
L	\rightarrow	6 770	6 000	5 540	5 100	4 000
$T \rightarrow \max$	0	0,24	0,216	0,183	0,157	0
$C_0 \rightarrow \max$	0	0,150	0,144	0,131	0,117	0
$C_0K_P \rightarrow \max$	0	0,120	0,125	0,120	0,111	0
$K_P \rightarrow \max$	0	0,150	0,166	0,171	0,166	0
$W_x \rightarrow \max$	0	←	0,5	←	0,513	0,471
Коэффициент Пуассона <i>µ</i>	0	0,2	0,25	0,3	0,333	0,5
В механике – законы:		Треска	Гука	Зюзина, Миро- нова	Мизеса	←
Пределы состояния: сцеплени		сцепления	упругости	проч- ности	устой- чивости	←
t tiek in	Инфрак- расный	Красный	Оран- жевый	Желтый	Зеленый	Фиоле- товый
Траектория	Точка	Линия	Ветвь синусоиды	Ветвь цикло- иды	Дуга окруж- ности	Точка
Потенциал	\rightarrow	$C_0 \rightarrow \max$	$F \to \max$ $C_0 K_P$ $\to \max$	$t \to \min$ K_P $\to \max$	$ \begin{array}{c} 3 \to \min \\ W_x \\ \to \max \end{array} $	←

Примечание. b, a — линейные параметры при условии b + a = 1; b : a — определяющая пропорция; $\Pi_{K(II)} = b/a$ — инвариант состояния в линейной геометрии; β , γ — угловые параметры состояния взаимодействия структурных систем, углы площадок разрушения n и m; N — число сторон вписанного в круг Мора многоугольника (полигона); L — длина волны спектра света; $\Pi_{K(II)} = \sqrt{\Pi_{K(II)}}$ — инвариант состояния в нелинейной геометрии; X_A — уровень нелинейности (инвариант нелинейности); φ — угол внутреннего трения (инвариант угла связности структурной системы); τ — инвариант касательных напряжений; C_0 — инвариант сцепления структурной систем; C_0K_P — инвариант упругости; K_P — критерий предельного состояния (инвариант прочности); W_x — инвариант момента сопротивления сечения балки; спектр — цветовая гамма; потенциал — условия максимума инвариантов предельных состояний; F — потенциал силы взаимодействия; t — потенциал времени переходного процесса; θ — энергетический потенциал.

Теория дистортности в настоящее время используется в таких областях знаний, как математика и геометрия, физика, естествознание, природопользование, механика грунтов и горных пород, геология, пищевая промышленность, экономика и менеджмент, трибология, эзотерика, горное дело, техника и технология, музыка, физиология и медицина, биология и химия, педагогика, философия, экология, архитектура и строительство, искусство, космология, теория сложности, комплексная безопасность, качество образования и др.

Библиографический список

- 1. Миронов В.А., Зюзин Б.Ф., Лотов В.Н. Введение в дистортность: монография. Тверь: ТвГТУ, 1994. 160 с.
- 2. Зюзин Б.Ф., Миронов В.А. Инварианты дистортности: монография. Тверь: ТвГТУ, 2015. 168 с.
- 3. Зюзин Б.Ф., Миронов В.А., Юдин С.А. Инварианты дистортности в оценке предельных состояний в геомеханике // Проблемы прочности, пластичности и устойчивости в механике деформируемого тела: материалы VIII Международного научного симпозиума, посвященного 85-летию со дня рождения заслуженного деятеля науки и техники РФ профессора В.Г. Зубчанинова. Тверь: ТвГТУ, 2015. С. 200–205.
- 4. Зюзин Б.Ф., Миронов В.А. Дистортность естественнонаучная теория: монография. Тверь: ТвГТУ, 2019. 168 с.
- 5. Зюзин Б.Ф., Жигульская А.И., Юдин С.А. Механика торфа и торфяной залежи: учебное пособие. Тверь: ТвГТУ, 2020. 112 с. URL: https://www.geokniga.org/books/16670 (дата обращения: 29.03.2024).
- 6. Зюзин Б.Ф., Жигульская А.И. Дистортность в методологии взаимодействия технологических машин с торфяной залежью: монография. Тверь: ТвГТУ, 2021. 168 с.
- 7. Зюзин Б.Ф., Жигульская А.И., Михайлов А.В. Models for representing limit states in geomechanics // Journal of Physics: Conference Series. 2021. № 1753. P. 20–34. URL: http://personalii.spmi.ru/en/details/30710?ysclid=m00wjg7a64277908245 (дата обращения: 29.03.2024).
- 8. Зюзин Б.Ф. Дистортность вокруг нас: монография. Тверь: ТвГТУ, 2023. 160 с.

LIMITING INVARIANTS OF DISTORTION IN CONTACT INTERACTION

B.F. Zyuzin, A.I. Zhigulskaya

Abstract. The definition of the concept of distortion is given. Six main limiting levels of equilibrium stress-strain states are indicated. A generalized table of the limiting invariants of distortion is proposed to evaluate these states in problems of contact interaction. A generalized table of pre-specific invariants of distortion is proposed to evaluate these states in problems of contact interaction.

Keywords: contact interaction, marginal invariants of distortion.

Об авторах:

ЗЮЗИН Борис Федорович – доктор технических наук, профессор, заведующий кафедрой технологических машин и оборудования, ФГБОУ ВО «Тверской государственный технический университет», Тверь. E-mail: zbfru@yandex.ru

ЖИГУЛЬСКАЯ Александра Ивановна — кандидат технических наук, доцент кафедры технологических машин и оборудования, ФГБОУ ВО «Тверской государственный технический университет», Тверь. E-mail: 9051963@gmail.com

About the authors:

ZYUZIN Boris Fyodorovich – Doctor of Technical Sciences, Professor, Head of the Department of Technological Machines and Equipment, Tver State Technical University, Tver. E-mail: zbfru@yandex.ru

ZHIGULSKAYA Alexandra Ivanovna – Candidate of Technical Sciences, Associate Professor of the Department of Technological Machines and Equipment, Tver State Technical University, Tver. E-mail: 9051963@gmail.com

УДК 159.9

УДОВЛЕТВОРЕННОСТЬ ТРУДОМ КАК ФАКТОР МОТИВАЦИИ ПЕДАГОГИЧЕСКИХ РАБОТНИКОВ

О.В. Каширина, А.Е. Шабанова

© Каширина О.В., Шабанова А.Е., 2024

Аннотация. В статье рассмотрена взаимосвязь характеристик «удовлетворенность трудом» и «мотивация сотрудников». Изучены понятие и функции мотивации персонала. Проанализированы социальные, организационные и личностные факторы удовлетворенности трудом.